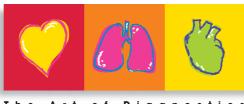


ECG Measurement and Interpretation Programm

Statement of accuracy for analysing ECG units

Sales and Service Information

The SCHILLER sales and service centre network is world-wide. For the address of your local distributor, contact your nearest SCHILLER subsidiary. In case of difficulty a complete list of all distributors and subsidiaries is provided on our internet site:


Address Headquarters

SCHILLER AG Altgasse 68 CH-6341 Baar Switzerland Tel: +41 (0) 41 766 42 42 Fax: +41 (0) 41 761 08 80 E-Mail: sales@schiller.ch www.schiller.ch

C€ 0123

The SCHILLER ELECTROCARDIOGRAPHS bears the CE-0123 mark (Notified Body TÜV-SÜD Produkte Service GmbH, Ridlerstr. 65, 80339 Munich, Germany), indicating its compliance with the essential requirements of the Annex I of the Medical Device Directive 93/42/EE regarding safety, functionality and labelling. The requirements apply to patients, users and third persons who come into contact with this device within the scope of its intended use.

Article No: 2.530036 rev.: c Issue date: 09.05.14

The Art of Diagnostics

1	Statement of Accuracy5	
1.1	Limitations of Computer Interpretation 5	
1.2	Interpretation Criteria 6	
1.3	Development Process 6	
1.4	Interpretative Accuracy 7	
1.5	Study for the Identification of Acute Myocardial Infarction 7	7
1.6	Test Results 8	
1.7 1.7.1 1.7.2 1.7.3	Measuring Wave Amplitudes	
1.8	Isoelectric Segments within the ECG	
1.9	Minimum Wave Acceptance	
1.10	Intended Use	
1.11	Accuracy Measures for Diagnostic Statements 10	
1.12	Diagnostic Interpretive Statements 10	
2	Test Results12	
2.1 2.1.1 2.1.2	Test Data Base Comparison12Summary of the Test Data Base Comparison12Test Data Base Comparison - Detailed13	
2.2	Database 16	
2.3	Amplitude Measurement Calibration 17	
2.4	Pacemaker Signal Distortion 18	
2.5 2.5.1 2.5.2 2.5.3	Result Tables19Acute Myocardial Infarction Results19SCHILLER Program Performance20Reference and Actual Measured Value22	

i

1 Statement of Accuracy

This appendix is provided for all SCHILLER interpretive units to give support data for the physician for verification of the interpretation program. Also provided is specific information about the program and about computer interpretation programs in general.

The interpretation statements provided by the program, and the criteria used for the statements, are given in **ECG Measurement and Interpretation Program physicians guide** (SCHILLER article number 2.511035). This is provided with every SCHILLER interpretive unit.

1.1 Limitations of Computer Interpretation

The SCHILLER ECG Interpretation program is designed to assist the physician in reading and evaluating an ECG printout. It was developed in cooperation with leading cardiologists and evolved over many years; extensive checking has been carried out using, among others, the CSE diagnostic data base (Common Standards for Quantitative Electrocardiology (concerted action Project II.1.1.2). However, no program is completely infallible and interpretative standards and criteria can and do vary between cardiologists and programs. Never rely solely on the statements given with any computerised interpretation program; a machine cannot deliver a complete diagnosis on the basis of the ECG alone without a considerable amount of additional information. Always obtain physician's confirmation.

The statements given with this or any interpretation program do not replace a detailed report by the physician. The comprehensive clinical diagnosis of a patient is the physician's responsibility and privilege.

The numerical and graphical results and any interpretation given must be examined with respect to the overall clinical condition of the patient and the general recorded data quality.

The ECG evaluation should always be systematic and conducted in a predetermined order. Before each ECG evaluation, verification that the recording was carried out correctly must be made. It should also be determined whether the patient received any heart-active medication (digitalis, beta-blockers, anti-arrhythmics, diuretics etc.) before the recording that could affect the recording. Always examine the ECG first, then read the interpretation statements. A computerised ECG analysis is not a substitute for over-reading by a qualified physician. Erroneous interpretations can occur.

Just as cardiologists may differ on interpretation, some disagreement between the computer report and the cardiologist may occur.

The ECG computer interprets the ECG in an isolated way. Therefore two recordings taken from the same patient within a brief period of time may show different interpretations. This situation is due to the 'borderline' effect in which one ECG barely fulfils a certain criteria, whilst in another recording this criteria is just missed (e.g the QRS duration in bundle branch block).

1.2 Interpretation Criteria

The interpretation criteria used by the SCHILLER program are identical to those utilized by electrocardiologists for several years. For the most part, decision tree algorithms lead to specific interpretations. For statements with varying degrees of certainty, a scoring scheme is adopted. This means that different ECG features contribute to a total score. A low score gives a lower probability to a statement than a measurement with a higher score.

The levels of confidence, the scoring scheme and the statements are provided in the SCHILLER book **ECG Measurement and Interpretation Program Physicians Guide** (also see para. 1.12 Diagnostic Interpretive Statements, page 10).

1.3 Development Process

Classical textbook criteria are sometimes rather imprecise and sometimes contradictory or incomplete. Therefore improvement of the criteria is always possible and necessary.

To do this in a systematic way, SCHILLER utilises several sets of ECG data stored on computer. The availability of this data allows for validation of the interpretation software. More than 50,000 ECGs were used for program development, while ca. 3,000 ECGs, validated by expert cardiologists, were used to measure program performance.

SCHILLER ECG Interpretation Program

1.4 Interpretative Accuracy

The interpretive accuracy of the SCHILLER ECG interpretation program is demonstrated on the following database. This data was obtained on a test set of 618 ECG recordings. This particular test set consists of 3 groups of different patient population.

All ECGs were reviewed by different expert cardiologists. The figures show the agreement between the computer interpretation and these experts:

Group 1	 Number of patients 	→ 242
	Male	→ 139
	Female	→ 104
	Age range	→ 24-93 (mean 56 ±11)
	Validated at:	→ University Hospital, Basel, Switzerland (cardiology department)
Group 2	Number of patients	→ 126
	Male	→ 126
	Female	→ 0
	Age range	→ 18-22 (mean 20 ± 1)
	Validated at:	→ Swiss Military Service, Cantonal Hospital, Lucerne, Switzerland (cardiology department)
Group 3	 Number of patients 	→ 250
	Recorded / Validated	→ CSE Study (common standards for quantitative electrocardiology)
		→ University Hospital, Zurich, Switzerland,
	Validated at	→ Central Hospital, Karlstad, Sweden
		→ University Hospital, Basel, Switzerland

Total number of validated ECGs: 618Total number in agreement:617

1.5 Study for the Identification of Acute Myocardial Infarction

A Study population of 448 patients (288 male, 160 female) suspected of acute myocardial infarction with onset of pain < 6 hours were screened as part of the PREMISE project (Prehospital Myocardial Infarction Treatment by Streptokinase), initiated in June 1992 at the department of Cardiology, District hospital Midden, Twente, Netherlands. Leader Dr. JJJ Bucx. The measurements were carried out using the SCHILLER Cardiovit AT-3 and the CK levels determined and monitored.

Another study population of 235 patients (153 male, 82 female) suspected of acute myocardial infarction with onset of pain \leq 12 hours were screened as part of the APACE project (advantageous Predictors of Acute Coronary Syndromes Evaluation), initiated in April 2006 at University Hospital Basel. The measurements were carried out using the SCHILLER Cardiolaptop AT-110 and the cardiac troponin levels determined and monitored.

For an overview of these results see para. 2.5.1 Acute Myocardial Infarction Results, page 19.

1.6 Test Results

It is understood that good agreement is possible only for statements where cardiologists agree on the criteria.

Furthermore, it must be stated that the level of sensitivity and specificity may show lower figures if the reference is not an ECG based opinion of an expert cardiologist but an ECG independent diagnostic result such as ECHO-cardiographic measurements (i.e. left ventricular hypertrophy or myocardial infarction)

Such figures, however, simply reflect the limits of electrocardiology, while our aim is to demonstrate the adequacy of computer interpretation.

The interpretive accuracy of the SCHILLER interpretive program is demonstrated in the following paragraphs.

1.7 Measuring Wave Amplitudes

- International Standard IEC 60601-2-25:2011(subclause 201.12.1.101.2)
- SCHILLER ECG measurement and Interpretation Program Physicians Guide (Page 11).

1.7.1 Signal Acquisition

SCHILLER ECG units acquire all 12 (16) leads simultaneously. A full recording of 10 seconds on all leads is retained in memory for processing and report printing.

1.7.2 Pattern Recognition

Within the average beat, the program detects beginning and end of the QRS complex, searches for the P wave and its onset and offset, and finally determines the end of the T wave. It is evident that there is only one (global), onset and offset for these waves in all 12 (16) leads and it is the earliest and the latest electrical activity in any lead.

1.7.3 Measurements

Intervals are calculated based on the wave onset and offset. Next, the individual time duration and amplitudes in all leads are determined in addition to the electrical axes in the frontal plane for all waves.

The way that the wave amplitudes are measured are detailed in the ECG Measurement and Interpretation Program Physicians Guide page 7 et seq.

(Also see para. 2.3 Amplitude Measurement Calibration, page 17).

1.8 Isoelectric Segments within the ECG

International Standard IEC 60601-2-25:2011(subclause 201.12.1.101.3)

Isoelectric segments are excluded from the corresponding lead arc duration measurements (Q, R, S waves). Isoelectric parts (I-wave) are also excluded in the duration measurement of the respective adjacent waveform.

SCHILLER ECG Interpretation Program

1.9 Minimum Wave Acceptance

The criteria applied in the equipment for acceptance of minimum waveforms is as follows:

- Amplitude <u>></u> 30 µVolts
- Duration <u>></u> 6 ms

The disclosed changes in measurements caused by noise on ECGs is as follows:

Global Measurement	Type of added noise	Mean (ms)	Standard Dev. (ms)
P duration	High Frequency	3.4	5.9
P duration	Mains Frequency 50Hz	-0.4	4.0
P duration	Mains Frequency 60Hz	0.0	3.0
P duration	Base Line	3.2	6.6
PQ interval	High Frequency	1.6	2.6
PQ interval	Mains Frequency 50Hz	1.4	6.5
PQ interval	Mains Frequency 60Hz	2.4	3.1
PQ interval	Base Line	1.2	3.7
QRS duration	High Frequency	-1.8	5.0
QRS duration	Mains Frequency 50Hz	-2.0	6.8
QRS duration	Mains Frequency 60Hz	-2.0	5.2
QRS duration	Base Line	0.8	2.7
QT Interval	High Frequency	-1.4	5.0
QT Interval	Mains Frequency 50 Hz	-7.4	5.2
QT Interval	Mains Frequency 60 Hz	-5.2	4.3
QT Interval	Base Line	-0.4	5.7

1.10 Intended Use

International Standard IEC 60601-2-25:2011(subclause 201.7.9.2.101)

- SCHILLER ECG units are designed for the recording, analysis and evaluation of ECG Recordings. Recordings can be used as a diagnostic aid for heart function and heart conditions and can be used for all patients of both sexes, all races, and all ages.
- ▲ The diagnostic applications for which the results are intended is in the diagnosis of cardiac abnormalities in the general population, detecting acute myocardial ischemia, and infarction in chest pain patients, etc.
- ▲ Intended for use in hospitals, cardiological units, out-patient clinical units, and general physicians offices.
- ▲ Low sensitivity settings will suppress certain non-specific ECG diagnoses; this can be used for screening high-specificity program intended for low-risk patients. The high sensitivity setting is used for detecting cardiac abnormalities in all and high risk patients.
- ▲ There is no danger for patients with pacemaker.
- ▲ The unit must be operated in accordance with the specified technical data.

1.11 Accuracy Measures for Diagnostic Statements

The ECGs of normals had the diagnosis verified by standard clinical methods to establish the absence of disease, particularly heart disease. These methods include:

- normal physical examination
- · absence of cardiac symptoms
- absence of history of any known disease with a known influence on cardiac function or morphology.

The ECGs of heart disease patients used for validation of the database contour for testing the accuracy of the interpretation has also had the diagnosis verified by a confirmatory non-ECG means as follows:

- Ultrasound
- SPECT
- Szintigraphy
- · Coronary angiography
- Determination of CPK and myoglobin
- etc.

The number of ECGs tested in each diagnostic category, group statistics (mean standard deviation, percentages, etc.) of patient demographics such as age, gender, and race, etc. are given in the following result tables.

1.12 Diagnostic Interpretive Statements

• SCHILLER ECG measurement and Interpretation Program Physicians Guide (Page 13 and 14).

The following accuracy measures for the diagnostic interpretative statements are included:

- sensitivity, specificity, and positive predictive value for all the major diagnostic interpretative statements.
- sensitivity, specificity and positive predictive values for more detailed diagnostic interpretative statements.

For the purpose of this document, four key accuracy measures are explained following.

The true diagnosis for a patient is known (truth). The ECG interpretation (classification) is called **Test**. The following designations are applied to characterise the performance of a test (respectively of an ECG interpretation system).

- a Normal correctly classified as Normal is called True normal (TN)
- a Normal incorrectly classified as Pathologic is called False pathologic (FP)
- a Pathologic incorrectly classified as Normal is called False normal (FN)
- a Pathologic correctly classified as Pathologic is called True pathologic (TP)

Reference	Т	est
	Normal	Pathologic
Normal	TN	FP
Pathologic	FN	TP

The following equations are calculated from a two (or multi) category test:

Probability that a True pathologic would be classified as a Pathologic.

```
Sensitivity = \frac{\text{TP}}{\text{TP + FN}} x 100%
```

Specificity

Sensitivity

Probability that a True normal would be classified as Normal.

Specificity =
$$\frac{TN}{TN + FP}$$
 x 100%

Positive predictive value

Probability that a classified Pathologic is classified a True pathologic.

Positive Predicted Value = $\frac{TP}{TP + FP}$ x 100%

i

- The term **Sensitivity** here and in related requirements, stands for ECG interpretation sensitivity.
- Note that the explanation above can be made general by substituting Negative for Normal and Positive for Pathologic.

2 Test Results

2.1 Test Data Base Comparison

2.1.1 Summary of the Test Data Base Comparison

The following results were obtained:

Statement	True positive	False Positive	Sensitivity (%)	Specificity (%)	Positive Predic- tive Value (%)
Rhythm Statements					
Sinus Rhythm	1677	0	99	100	100
Abnormal Rhythm	54/54	5	100	99	92
Premature atrial contraction	28/28	3	100	99	90
Premature ventricular contraction	29/32	0	91	100	100
Atrial fibrillation	138	14	98	99	90
Conduction Defects					
Right bundle branch block (RBBB)	33/37	0	92	100	100
Left bundle branch block (RBBB)	29/30	0	97	100	100
Infarction					
anterior	105/109	4	97	100	97
inferior	63/66	13	95	98	83
Hypertrophy					
Left ventricular hypertrophy (LVH)	42/43	1	98	100	98
Overall Performance	393/400	14	98	94	97

		Butu		ompu		- 0.u				
Diagnosis	Sub Category	True Neg.	False Neg.	True Pos.	False Pos.	Sens. (%)	Spec. (%)	P.Red. (%)	N.p.v (%)	Prev.
Rhythm										
Supraventricular	Extra systole	587	0	28	0	100	99.5	90.3	100	0.045
	Bigeminy	616	0	28	3	100	100	100	100	0.003
	Trigeminy	-	-	-	-	-	-	-	0	-
	Atr. escape beats	-	-	-	-					0
Ventricular	Extra systole	586	3	29	0	90.6	100	100	99.4	0.052
	Bigeminy	617	0	1	0	100	100	100	100	0.002
Ventricular escape beats		614	0	4	0	100	100	100	100	0.006
Aberr. ventr. cond		-	-	-	-					0
Sinus Rhythm		126	5	487	0	99	100	100	96.2	0.746
Sinus arrhythmia		594	0	23	1	100	100	99.8	95.8	0.037
Sinus Bradycardia		599	0	19	0	100	100	100	100	0.031
Sinus Tachycardia		588	0	30	0	100	100	100	100	0.049
Rhythm 2										
Supraventricular Tachycardia		617	0	1	0	100	100	100	100	0.002
Nodal rhythm		617	0	1	0	100	100	100	100	0.002
Reg. rh. no P found		617	0	0	1	100	99.8	0	100	0.002
idioventr. rhythm		-	-	-	-	-	-	-	-	0
Ventricular Tachycardia		-	-	-	-	-	-	-	-	0
Atr. fib / flutter		583	1	31	3	97	99.7	94.1	99.6	0.053
Atr. fib / rapid evnt. resp.		602	0	13	3	100	99.5	81.2	100	0.021
Pacemaker		613	0	11	1	100	99.8	80	100	0.006
Electrical Axis										
Abn. left axis dev.		545	0	73	0	100	100	100	100	0.118
Leftward axis		535	0	83	0	100	100	100	100	0.134
Rightward axis		604	0	14	0	100	100	100	100	0.023
Abn. right axis dev.		606	0	12	0	100	100	100	100	0.019
Abn. right sup. axis dev.		609	0	9	0	100	100	100	100	0.015
Indetern. axis		608	0	10	0	100	100	100	100	0.016
Atrial Activity										
Left atrial abn.		591	3	24	0	89	100	100	99.5	0.044
Poss. left atrial enlargement		605	0	10	3	100	99.5	76.9	100	0.016
Right atrial enlargement		611	0	7	0	100	100	100	100	0.011
Biatrial enlargement		617	0	1	0	100	100	100	100	0.002
Prolonged PR		590	1	25	2	96.2	99.7	92.6	99.8	0.042
ECG Voltages										
Low limb lead voltage		592	0	26	0	100	100	100	100	0.042
Low Voltage		-	-	-	-					0

2.1.2 Test Data Base Comparison - Detailed

2 Test Results

2.1 Test Data Base Comparison

SCHILLER ECG Interpretation Program

Diagnosis	Sub Category	True Neg.	False Neg.	True Pos.	False Pos.	Sens. (%)	Spec. (%)	P.Red. (%)	N.p.v (%)	Prev.
Blocks										
RBBB		582	3	33	0	92	100	100	99.5	0.058
Incomplete RBBB		589	4	25	0	86.2	100	100	99.3	0.047
LBBB		589	1	28	0	96.6	100	100	99.8	0.047
Incomplete LBBB		616	0	2	0	100	100	100	100	0.003
Non specific AV Block		595	0	20	3	100	99.5	87	100	0.032
LAFB		612	1	26	0	96.3	100	100	99.8	0.044
LPFB		612	1	5	0	83.3	100	100	99.8	0.070
Bifasc. Block		604	1	13	0	92.9	100	100	99.8	0.023
QRS Abnormalities										
anteroseptal		606	1	10	1	91	99.8	91	98.8	0.018
anterolateral		615	0	3	0	100	100	100	100	0.005
lateral		611	0	7	0	100	100	100	100	0.008
inferior		611	0	7	1	100	100	100	100	0.011
Myocardial Infarctions										
septal		617	0	1	0	100	100	100	100	0.002
anteroseptal		580	2	36	0	94.7	100	100	99.7	0.060
anterior		599	0	19	0	100	100	100	100	0.030
anterolateral		611	0	6	1	100	99.8	85.7	100	0.010
lateral		610	0	8	0	100	100	100	100	0.013
high lateral		612	0	5	1	100	99.8	83.3	100	0.008
inferolateral		617	0	1	0	100	100	100	100	0.002
inferior		539	3	62	13	95.4	97.6	82.7	99.4	0.105
ST-T Morphology										
ST abn., ant. sept.		618	-	-	-	-	-			0
ST abn., ant.		612	1	5	0	83	100	100	99.8	0.010
ST abn., ant. lat.		618	-	-	-	-				0
ST abn., lat		617	0	1	0	100	100	100	100	0.002
ST abn., inf.		616	0	2	0	100	100	100	100	0.003
Non specific ST depression		616	0	2	0	100	100	100	100	0.003
ST-T abn., ant. sept ischemia or strain		616	-	-	-					0
ST-T abn., ant. ischemia or strain		608	0	10	0	100	100	100	100	0.016
ST-T abn., ant. lat. ischemia or strain		597	0	21	0	100	100	100	100	0.034
ST-T abn., lat ischemia or strain		599	0	19	0	100	100	100	100	0.030
ST-T abn., inf. ischemia or strain		598	0	20	0	100	100	100	100	0.032
ST-T abn., recent myo/peric. damage		614	0	4	0	100	100	100	100	0.006

SCHILLER ECG Interpretation Program

Physicians Guide

Diagnosis	Sub Category	True Neg.	False Neg.	True Pos.	False Pos.	Sens. (%)	Spec. (%)	P.Red. (%)	N.p.v (%)	Prev.
ST-T Morphology 2; QT Interval										
Non Specific ST abn., elevation		617	1	0	0	0	100	100	0	0.002
T abnorm., ant. sept.		617	0	1	0	100	100	100	100	0.002
T abnorm., ant.		601	0	17	0	100	100	100	100	0.028
T abnorm., ant. lat.		616	0	2	0	100	100	100	100	0.003
T abnorm., lat.		590	0	24	4	100	99.3	85.7	100	0.039
T abnorm., inf.		608	1	9	0	90	100	100	99.8	0.016
Non specific T Abnormality		594	2	22	0	92	100	100	99.7	0.039
Prolonged QT		603	0	15	0	100	100	100	100	0.024
Hypertrophy										
LVH	definitive	606	0	12	0	100	100	100	100	0.020
	consider	599	0	18	1	100	100	100	100	0.003
	ampl. criteria	616	0	2	0	100	100	100	100	0.003
	mod. am- pl.criteria	617	1	10	0	91	100	100	99.8	0.016
RVH	definitive	-	-	-	-					0
	consider	611	2	5	0	71	100	100	99.7	0.008
Miscellaneous Statements										
S1S2S3 pattern		618	-	-	-	-	-	-	-	0
WPW type A		616	0	2	0	100	100	100	100	0.003
WPW type B consider		616	0	2	0	100	100	100	100	0.003
RS trans. zone in V to the right		612	0	6	0	100	100	100	100	0.010
RS trans. zone in V to the left		613	0	5	0	100	100	100	100	0.008
poss. reversal of arm leads		617	0	1	0	100	100	100	100	0.002
abnormal ECG		204	7	393	14	98.25	93.58	96.68	0.6472	

2.2 Database

The electrocardiograms for testing the accuracy of rhythm statements were representative of the target population. The database contained:

- 1692 ECGs with sinus rhythms (normal sinus rhythm, sinus bradycardia, sinus tachycardia).
- 138 ECGs with atrial fibrillation.

ECGs of other major rhythm categories (e.g. atrial flutter, atrial tachycardia, paced rhythms, junctional rhythms, ventricular rhythms, etc.) were also included in this database. Similarly, first degree atrio-ventricular (AV) block, second degree AV blocks, AV dissociation, premature atrial complexes, etc.), were also included.

The true rhythm of these ECGs (gold standard used to compare the accuracy of the analysing electrocardiograph) was confirmed by at least two trained cardiologists specialised in rhythm disorders after carefully reviewing rhythm from an ECG plot of at least two simultaneously plotted LEADS showing the atrial activity (e.g.: LEAD II and LEAD V1) for at least 10 s.

Full results of the tests taken are available on request. (Also see para. 2.5.1 Acute Myocardial Infarction Results, page 19, and see para. 1.12 Diagnostic Interpretive Statements, page 10).

2.3 Amplitude Measurement Calibration

- Details of the CTS test atlas are given in International Standard IEC 60601-2-25:2011 (Annex GG and HH)

The amplitude must be checked and calibrated against a reference value every two years. The factory reference calibration table is given in the test results (see para. 2.5.3 Reference and Actual Measured Value, page 22).

Amplitude measurements

Amplitude measurements given for P, Q, R, S, ST and T must not deviate from the reference values by more than $\pm 25 \ \mu$ V for amplitudes $\leq 500 \ \mu$ V or by more than 5 % for amplitudes >500 μ V.

The calibration and analytical ECGs listed in IEC 60601-2-25:2011 Table GG.1 of Annex GG must be fed into the electrocardiograph and recorded for at least 10s. The differences between the amplitude measurements and the reference values for LEADS I, II, V1, ..., V6 are to be determined for all P-, Q-,R-, S-, ST- and T-waveforms.

The difference for each amplitude measurement must not deviate from the reference value by more than $\pm 25 \,\mu\text{V}$ for reference values $\leq 500 \,\mu\text{V}$, or by more than 5 % or $\pm 40 \,\mu\text{V}$ for reference values > 500 μV .

The minimum time that the unit is guaranteed to perform according to the interpretation statements and measurement results is 2 years.

2.4 Pacemaker Signal Distortion

International Standard IEC 60601-2-25:2011(subclause 201.12.4.109)

The function of SCHILLER devices is not adversely affected by the operation of a pacemaker.

Compliance has been proved according to the follwowing standard:

The ELECTROCARDIOGRAPH has the capability of displaying the ECG signal in the presence of pacemaker pulses with amplitudes between 2 mV and 250 mV, durations between 0,1 ms and 2,0 ms, a rise time of less than 0,1 ms, and a frequency of 100 pulses per minute. For pacemaker pulses having durations between 0,5 ms and 2,0 ms (and amplitude, rise time and frequency parameters as specified above), an indication of the pacemaker pulse is visible on the report; this indication is visible on the display with an amplitude of at least 0,2 mV referred to input.

2.5 Result Tables

Full results tables are available on request. The following tables give a summary of the results and other data.

2.5.1 Acute Myocardial Infarction Results

Of the 448 patients (228 male, 160 female), 94 had an acute Myocardial infarction as defined by CK levels.

	Not acute MI by CK levels	Acute MI by CK levels
Not acute MI ECG	352	31
Acute MI ECG	2	63
Sensitivity	0.67	
Specificity	0.99	
Positive predict. value	0.97	
Negative predict. value	0.92	

For the Chi square test for confidence limits the resulting confidence limit is <0.01.

Of the two patients with false positive results, one suffered from hyperkalemia, the other had a pacemaker.

Of the 235 patients (153 male, 82 female), 38 had an acute myocardial infarction as defined by cardiac troponin levels.

	Not acute MI by Troponin	Acute MI by Troponin
Not acute MI ECG	196	20
Acute MI ECG	1	18
Sensitivity	0.47	
Specificity	0.99	
Positive predict. value	0.95	
Negative predict. value	0.91	

The only patient with false positive results also had a bundle branch block. The sensitivity is relatively low because there were many acute myocardial infarctions not showing any significant ST elevation and depression within the single ECG. Repeated measurements or continued monitoring will improve sensitivity.

2.5.2 SCHILLER Program Performance

Schiller versus Combined Referees

The following tables gives the agreement on 1220 cases (CSE) by the SCHILLER program versus the combined referees (cardiologists) in percent (%).

Program	normal	LVH	RVH	BVH	AMI	IMI	MIX	VH+MI	other	TOTAL
Referee										
normal	87.7	2.8	0.8	0.2	2.3	4.2	0.1	0.4	1.6	100.0
LVH	20.8	59.2	0.0	0.0	3.5	3.8	1.7	10.0	1.0	100.0
RVH	38.3	10.0	40.0	3.3	1.7	0.0	0.0	6.7	0.0	100.0
BVH	15.5	6.9	58.6	0.0	0.0	0.0	0.0	8.6	10.3	100.0
AMI	10.4	1.9	0.0	0.3	75.5	0.6	8.8	2.2	0.3	100.0
IMI	8.3	0.4	0.0	0,0	0.4	78.1	6.3	5.9	0.4	100.0
MIX	6.9	0.0	0.0	0.0	2.8	3.5	70.8	5.6	10.4	100.0
VH+MI	22.7	2.3	0.0	0.0	0.0	2.3	0.0	63.6	9.1	100.0
other	15.6	0.0	0.0	0.0	3.1	0.0	3.1	9.4	68.8	100.0
TOTAL	44.1	8.9	1.3	1.6	11.6	17.1	6.8	4.8	3.7	100.0

Condition	Sensitivity	Positive Predictive value	Negative Predictive value
normal	93.2	98.7	26.5
LVH	64.4	93.4	54.1
RVH	43.4	92.3	62.7
BVH	70.2	94.3	80.3
AMI	77.6	97.4	39.5
IMI	79.4	93.3	51.6
MIX	77.0	95.6	52.7
VH+MI	75.7	93.3	71.9
HYP	56.6	92.8	69.3
МІ	85.1	95.4	52.5
Abnormal	73.6	94.6	55.6

Total agreement: 75.33% on 1220 cases.

Schiller versus Truth (Gold Standard)

The following tables give SCHILLER program versus 'truth' (diagnostic results based on golden standards) in percent (%).

Program	normal	LVH	RVH	BVH	AMI	IMI	MIX	VH+MI	other	TOTAL
Truth										
normal	91.1	1.8	0.8	0.0	2.9	2.9	0.5	0.0	0.0	100.0
LVH	32.0	47.0	0.0	0,0	5.5	6.6	1.1	6.8	1.1	100.0
RVH	43.6	21.8	23.6	3.6	0.0	1.8	0.0	5.5	0.0	100.0
BVH	20.8	0.0	0.0	33.0	3.8	1.9	0.0	7.5	33.0	100.0
AMI	17.1	2.4	0.0	0.0	68.2	1.2	8.2	2,9	0.0	100.0
IMI	20.1	0.0	0.0	0.0	0.7	66.7	7.3	4.8	0.4	100.0
MIX	7.5	0.0	0.0	0.0	0.0	0.0	62.3	8.9	21.2	100.0
VH+MI	21.0	0.0	0.0	0.0	0.0	0.0	0.0	48.4	30.6	100.0

Condition	Sensitivity	Positive Predictive value	Negative Predictive value			
normal	91.1	64.7	95.0			
LVH	47.0	78.9	91.3			
RVH	23.6	81.3	96.5			
BVH	33.0	89.7	97.0			
AMI	68.2	82.3	95.0			
IMI	66.7	87.1	91.0			
MIX	62.3	54.5	97.6			
VH+MI	48.4	25.4	98.6			
HYP	44.8	90.3	86.3			
МІ	77.0	85.5	82.7			

Total accuracy: 67.5 % on 1220 cases; accuracy for 1063 cases only (without MIX, VH+MI, BVH): 70.1 %

2.5.3 Reference and Actual Measured Value

Confidence was established by using all the calibration waveforms in International Standard IEC 60601-2-25:2011. The following is a sample result measured using reference wave CAL20160:

	Reference Value (CAL20160)							Measured Value						
Global Interval (ms)														
P duration	116							116						
QRS duration	56							58						
Heart rate	60							60						
P-Q (P-R) interval		178							176					
Q-T Interval		354							360					
Abtastrate		500												
		П	Ш	aVR	aVL	aVF	I.	Ш	Ш	aVR	aVL	aVF		
Time Duration (ms) / Amplitude (µVolts)														
P1 Duration	116	116	0	116	112	112	116	116	0	116	116	116		
P1 Amplitude	150	150	0	-150	75	75	148	148	0	-148	73	73		
P2 Duration		0	0	0	0	0	0	0	0	0	0	0		
P2 Amplitude		0	0	0	0	0	0	0	0	0	0	0		
Q Duration		0	0	56	0	0	0	0	0	58	0	0		
Q Amplitude		0	0	-2000	0	0	0	0	0	-1998	0	0		
R Duration	56	56	0	-	56	56	58	58	0	0	58	58		
R Amplitude	2000	2000	0	0	1000	1000	1998	1998	0	0	999	999		
S Duration	0	0	0	0	0	0	0	0	0	0	0	0		
S Amplitude	0	0	0	0	0	0	0	0	0	0	0	0		
QRS Duration	56	56	0	56	56	56	58	58	0	58	58	58		
ST-T-Measured value, J-Point = QRS End														
ST-20-Amplitude	200	200	0	-200	100	100	199	199	0	-199	99	99		
ST-40-Amplitude		200	0	-200	100	100	199	199	0	-199	99	99		
ST-60-Amplitude		200	0	-200	100	100	199	199	0	-199	99	99		
ST-80-Amplitude	200	200	0	-200	100	100	199	199	0	-199	99	99		
T-Amplitude	400	400	0	-400	200	200	398	398	0	-397	198	198		

SCHILLER ECG Interpretation Program

	Reference Value (CAL20160)							Measured Value					
	V1	V2	V3	V4	V5	V6	V1	V2	V3	V4	V5	V6	
Time Duration (ms) / Amplitude (µVolts)													
P1 Duration		116	116	116	116	116	116	116	116	116	116	116	
P1 Amplitude		150	150	150	150	150	148	148	148	148	148	148	
P2 Duration		0	0	0	0	0	0	0	0	0	0	0	
P2 Amplitude		0	0	0	0	0	0	0	0	0	0	0	
Q Duration		0	0	0	0	0	0	0	0	0	0	0	
Q Amplitude		0	0	0	0	0	0	0	0	0	0	0	
R Duration		56	56	56	56	56	58	58	58	58	58	58	
R Amplitude		2000	2000	2000	2000	2000	1998	1998	1998	1998	1998	1998	
S Duration		0	0	0	0	0	0	0	0	0	0	0	
S Amplitude		0	0	0	0	0	0	0	0	0	0	0	
QRS Duration	56	56	56	56	56	56	58	58	58	58	58	58	
ST-T-Measured value, J-Point = QRS End													
ST-20-Amplitude		200	200	200	200	200	199	199	199	199	199	199	
ST-40-Amplitude		200	200	200	200	200	199	199	199	199	199	199	
ST-60-Amplitude		200	200	200	200	200	199	199	199	199	199	199	
ST-80-Amplitude		200	200	200	200	200	199	199	199	199	199	199	
T-Amplitude		400	400	400	400	400	398	398	398	398	398	398	

